Two [Fe(IV)=O Trp*] intermediates in M. tuberculosis catalase-peroxidase discriminated by multifrequency (9-285 GHz) EPR spectroscopy: reactivity toward isoniazid.
نویسندگان
چکیده
We have characterized the intermediates formed in the peroxidase cycle of the multifunctional heme-containing enzyme KatG of M. tuberculosis. Selected Trp variants from the heme proximal (W321F) and distal (W107F and W91F) sides were analyzed together with the wild-type enzyme with regard to the reaction with peroxyacetic acid and hydrogen peroxide (in the catalase-inactive W107F). The 9 GHz EPR spectrum of the enzyme upon reaction with peroxyacetic acid showed the contribution of three protein-based radical species, two Trp* and a Tyr*, which could be discerned using a combined approach of multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy with selective deuterium labeling of tryptophan and tyrosine residues and site-directed mutagenesis. Trp321, a residue in H-bonding interactions with the iron through Asp381 and the heme axial ligand His270, was identified as one of the radical sites. The 9 GHz EPR signal of the Trp321 radical species was consistent with an exchange-coupled species similar to the oxoferryl-Trp radical intermediate in cytochrome c peroxidase. On the basis of the possibility of distinguishing among the different radical intermediates of the peroxidase cycle in M. tuberculosis KatG (MtKatG), we used EPR spectroscopy to monitor the reactivity of the enzyme and its W321F variant with isoniazid, the front-line drug used in the treatment of tuberculosis. The EPR experiments on the W321F variant preincubated with isoniazid allowed us to detect the short-lived [Fe(IV)=O Por*+] intermediate. Our results showed that neither the [Fe(IV)=O Por*+] nor the [Fe(IV)=O Trp321*+] intermediates were the reactive species with isoniazid. Accordingly, the subsequent intermediate (most probably the other Trp*) is proposed to be the oxidizing species. Our findings demonstrate that the protein-based radicals formed as alternative intermediates to the [Fe(IV)=O Por*+] can play the role of cofactors for substrate oxidation in the peroxidase cyle of KatGs.
منابع مشابه
Identifying the Elusive Sites of Tyrosyl Radicals in Cytochrome c Peroxidase: Implications for Oxidation of Substrates Bound at a Site Remote from the Heme
The location of the Trp radical and the catalytic function of the [Fe(IV)═O Trp₁₉₁(•+)] intermediate in cytochrome c peroxidase (CcP) are well-established; however, the unambiguous identification of the site(s) for the formation of tyrosyl radical(s) and their possible biological roles remain elusive. We have now performed a systematic investigation of the location and reactivity of the Tyr rad...
متن کاملActive site structure of the catalase-peroxidases from Mycobacterium tuberculosis and Escherichia coli by extended X-ray absorption fine structure analysis.
The catalase-peroxidase encoded by katG of Mycobacterium tuberculosis is a more effective activator of the antibiotic isoniazid than is the equivalent enzyme from Escherichia coli. The environment of the heme iron was investigated using X-ray absorption spectroscopy to determine if differences in this region were associated with the differences in reactivity. The variation in the distal side Fe...
متن کاملUnprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy.
Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities i...
متن کاملCatalase vs peroxidase activity of a manganese(II) compound: identification of a Mn(III)-(mu-O)(2)-Mn(IV) reaction intermediate by electrospray ionization mass spectrometry and electron paramagnetic resonance spectroscopy.
Herein, we report reactivity studies of the mononuclear water-soluble complex [Mn(II)(HPClNOL)(eta(1)-NO(3))(eta(2)-NO(3))] 1, where HPClNOL = 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol, toward peroxides (H(2)O(2) and tert-butylhydroperoxide). Both the catalase (in aqueous solution) and peroxidase (in CH(3)CN) activities of 1 were evaluated using a range of techniques including electr...
متن کاملInfluence of the unusual covalent adduct on the kinetics and formation of radical intermediates in Synechocystis catalase-peroxidase: a stopped-flow and EPR characterization of the M275, Y249 and R439 variants
Catalase-peroxidases (KatGs) are heme peroxidases with a catalatic activity comparable to monofunctional catalases. They contain an unusual covalent distal side adduct among the side-chains of W122, Y249 and M275 (Synechocysis KatG numbering). The known crystal structures suggest that Y249 and M275 could be in hydrogen-bonding distances to R439. In order to investigate the role of this peculiar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 129 51 شماره
صفحات -
تاریخ انتشار 2007